4M Knowledge base - papers

Bimaterial Actuators and Sensor with Built-in Compensation of the Ambient Temperature Interference

J. Matović(a), Z. Jakšić(b)
a: ISAS, Technical University, 1040, Vienna, Austria
b: IHTM, University of Belgrade, 11000, Belgrade, Serbia

Abstract

We present a novel simple and efficient method for the full removal of the influence of ambient temperature variations to the operation of bimaterial-based MEMS actuators and sensors. The removal of the undesired interference is achieved through the very structure of the bimaterial cantilever, by reversing the order of bimaterial constituent materials at a certain length. Thus an extremely simple geometry is obtained for full self-compensation of the structures. We performed the full simulation of our devices by the finite element method. The structures require standard surface micromachining and utilize only Si-technology compatible materials like polyimides or SU-8. A simple rule for the determination of the zero-deflection condition is presented. The described compensation method enables a significantly reduced bimaterial device area and a much higher packaging density in element arrays, as well as an improved signal-to-noise ratio. The method is especially convenient for photodetector arrays for direct conversion of infrared radiation spatial distribution into a visible image.

Submitted on November 12, 2007 - 16:23.

minam fp6
Copyright© 4M Network of Excellence.